Amplitude(앰플리튜드)의 Recommend(추천) 기능을 활용하면, 마케팅 팀과 프로덕트 팀 모두 단 몇 분만에 고객 한 명 한 명을 위한 맞춤형 디지털 경험을 제공하는 것이 가능해집니다.
Amplitude(앰플리튜드)의 Recommend(추천) 기능은 모든 디지털 서비스 기업이 규모에 맞는 맞춤형 환경을 제공할 수 있도록 합니다. 이 기능을 통해 연도별로 로드맵을 가속화하고, 전환(Conversion) 속도를 높이며(보통 두 자리 숫자입니다), 비용을 약 수백만 달러 절감할 수 있습니다.
넷플릭스, 아마존과 같은 개인 맞춤 서비스를 제공하는 것은 모든 기업의 꿈입니다. 각 유저에 맞게 디지털 환경을 최적화하여, 유저 전용으로 맞춤 구축된 것처럼 느껴지게 합니다. 그러나 대부분의 기업에서 이러한 1:1 맞춤화 경험을 자동화하려고 할 때 상당한 진입 장벽에 마주치곤 합니다. 적합한 타겟 유저에게 도달하기 위한 정교한 ID 분석과, 그 타겟 유저에 맞는 적절한 메시지 작성을 위한 머신 러닝, 그리고 유저별 최적의 시간대를 파악하여 실시간으로 전달하는 것이 필요합니다. 또한, 규모에 따른 맞춤화 설정을 위해서는 프로덕트, 마케팅, 엔지니어링 담당자의 협업도 필수입니다.
이를 위해서는 수년 간의 투자와 수백만 달러의 개발 비용이 소요될 수 있습니다. 디지털 서비스 기업은 한 번에 몇 달 동안 리소스를 중단하거나 수백만 달러의 매출 손실을 초래하는 방법 중 절충안을 찾아야 할 수도 있습니다.
하지만 Amplitude(앰플리튜드)의 Recommend(추천) 기능을 활용하면, 절충안을 고민할 필요가 없습니다.
Recommend(추천)는 Amplitude(앰플리튜드) 디지털 최적화 시스템의 새로운 기능입니다. 이제 Amplitude(앰플리튜드) 행동 그래프를 통해 수집된 데이터를 기반으로 앤드 투 앤드 개인 맞춤화 워크플로우를 단 몇 분 만에 자동화할 수 있습니다. Recommend(추천) 기능은 마케팅 담당자, 프로덕트 매니저, 그로스 팀 등 디지털 경험 관련 담당자가 개인 맞춤화 과정을 직접 관리할 수 있도록 함으로써 개인화에 필요한 기술적인 부담을 줄여줍니다.
이 셀프 서비스 플랫폼은 다음의 세 가지 새로운 기능을 통해 적합한 유저에게 최적의 시간에 적절한 메시지를 매핑하는 것에서부터 ‘개인화’의 각 단계를 소개합니다.
개인화 과정을 위한 첫번째 단계는 타겟으로 설정할 적합한 고객을 식별하는 것입니다. Amplitude(앰플리튜드)의 Recommend(추천)는 사용자 목록을 구축하여 다운스트림 디지털 채널과 동기화할 수 있도록 지원하는 두 가지 기능 세트, ‘Cohorts’와 ‘Computations’을 제공합니다.
Cohorts는 세분화(Segmentation)의 핵심입니다. Amplitude(앰플리튜드)의 Recommend(추천)를 사용하면 지난 24시간 동안 장바구니에 상품을 추가했거나 구독 신청을 하는 등의 이벤트를 기준으로 그룹화된 유저 클러스터를 생성할 수 있습니다. 이 모든 작업은 SQL이나 코드 없이 셀프 서비스 인터페이스를 통해 수행됩니다. 또한 Recommend(추천)는 Amplitude(앰플리튜드) 디지털 최적화 시스템의 일부이기 때문에 Amplitude(앰플리튜드) Analytics(분석)에서 생성된 모든 Cohorts는 Recommend(추천)에서 즉시 사용할 수 있으며, 그 반대의 경우도 마찬가지입니다.
Computations는 세분화(Segmentation)의 최고 레벨입니다. Amplitude(앰플리튜드)의Recommend(추천)를 사용하면 시간이 지남에 따라 변하는 행동 정보를 집계하여 사용자 속성으로 변환하고 이를 통해 보다 정교한 필터링을 할 수 있습니다. 예를 들어 사용자가 데이터 엔지니어링을 사용하지 않고도 몇 초 만에 지난 24시간 동안 장바구니 추가하기 이벤트를 수행한 횟수를 카운트하거나 지난 30일 동안의 평균 주문 값을 집계할 수 있습니다.
Cohorts와 Computation을 함께 사용하면 참여에 기반한 마케팅 조건을 트리거하는 행동 세그먼트를 식별할 수 있습니다.
대다수의 사람들에게 “개인화” 경험이라고 하면 홈 스크린에 유저 이름을 삽입하거나 현재 위치를 기준으로 사진을 교환하는 것을 의미합니다. 이러한 유형의 창의적이고 인구통계학적 “개인화”는 권장되지만 그 영향은 한계가 있습니다. 과거 혹은 예상되는 미래의 행동을 기반으로 각 개별 사용자에게 완벽하게 맞추는 제품은 개인화가 지닌 모든 장점을 실현하는 것과 같습니다. 이제 Amplitude(앰플리튜드) Recommend(추천)의 Recommendations 기능을 통해 역동적인 제품 경험 제공이 가능해졌습니다.
Amplitude(앰플리튜드)의 자동화된 머신러닝 시스템으로 구동되는 새로운 Recommendations 기능을 사용하면 넷플릭스 또는 아마존과 같은 개인화 경험 환경을 만들 수 있습니다. 타겟으로 설정할 적합한 사용자가 식별되면 Amplitude(앰플리튜드) Recommend(추천)는 전환 가능성을 높일 수 있는 콘텐츠, 제품 및 메시지의 올바른 조합을 결정합니다.
셀프 서비스 사용자 인터페이스에서 SKU, 아이템 이름, 제품 카테고리 등의 이벤트 속성을 선택합니다. 구매, 구독 등의 최적화를 원하는 항목에 대한 결과도 선택할 수 있습니다. Amplitude(앰플리튜드)의 Recommend(추천)는 구매, 구독 등의 항목의 결과를 높일 수 있는 가능성에 따라 속성의 모든 잠재적 가치의 순위를 자동으로 매겨, 개별 사용자에게 맞춤화합니다.
Amplitude(앰플리튜드) Recommend(추천)는 한 번에 최대 100개까지 각 사용자가 선호할 가능성이 높은, 즉 전환 가능성을 극대화할 수 있는 순위 목록을 단 몇 분 만에 생성합니다. 이러한 항목은 분류를 위해 장바구니에 추가 될 가능성을 기준으로 순위가 매겨진 아이템 SKU 혹은 교차 판매 가능성에 따라 순위가 매겨진 제품 카테고리로 분류될 수 있습니다. 이 시스템은 3~5가지 다른 경험을 제공하는 대신 각 개별 유저에게 맞춤화된 수백만 개의 잠재적 경험의 경우의 수를 생성합니다. 데이터 과학 팀의 도움 없이 이 모든 작업을 직접 몇 분 이내에 완료할 수 있습니다.
미국 상위 15개 은행의 소비자 부문은 고객의 금융 지식과 활용 정도를 향상시키기 위해 Recommendations를 사용합니다. 유저가 모바일 앱에 접속하면 은행과 관계 있는, 혹은 행동과 일치하는 콘텐츠가 표시됩니다. 이 콘텐츠는 Amplitude(앰플리튜드) Recommend(추천)에 의해 제공된 ‘개별화’의 결과입니다. Recommendations을 활용한 이후, 이 은행의 영업 성과는 15% 증가했습니다.
개인화 워크플로우의 마지막 단계는 발송(Delivery)입니다. 전달할 적절한 메시지를 작성했다면, 이를 적합한 유저에게 전달해야 합니다.
Amplitude(앰플리튜드) Recommend(추천)는 실시간 API 및 동기화 기능을 제공하여 코호트, 계산된 속성 및 Recommendations를 디지털 채널에 연결합니다.
동기화 기능을 통해 데이터 개체를 모든 광고, 이메일 또는 실험 플랫폼과 동기화할 수 있습니다. 페이스북 또는 마케토와 코호트를 동기화하고, 유저 행동이 변경되면 해당 광고 및 고객 참여 대상의 캠페인을 자동으로 동기화합니다. 예를 들어 계산된 속성을 Braze(브레이즈)와 같은 작업 플랫폼과 동기화할 수 있으므로 유저의 평균 주문 값이 변경되면 해당 이메일 캠페인에서 속성이 자동으로 조정됩니다. 이 모든 것이 맞춤형 데이터 엔지니어링 파이프라인 없이 한 번의 클릭만으로 가능합니다.
이제 API 프로파일을 사용하여 모든 유저에 대해 REST API 앤드포인트를 쿼리하고 Amplitude(앰플리튜드)에서 유저 데이터로 반환할 수 있습니다. 유저가 사이트나 앱을 방문할 때 유저의 고유 ID별로 프로파일 API를 쿼리하고 Properties, Cohorts 및 Recommendations 목록을 반환하기만 하면 됩니다. 해당 응답을 제품에 직접 포함하고 권장되는 속성에 따라 제품 환경을 조정합니다.
호주의 복권 판매 기업 Oz Lotteries를 지원하는 디지털 플랫폼 점보 인터렉티브는 Braze(브레이즈)를 통해 API 프로파일을 사용하여 아마존 스타일의 Recommendations를 이메일과 푸시 알람으로 제공합니다. 고객들은 구매 후 구매 이력 및 행동 패턴에 따라 관심 있는 다른 게임을 제안하는 후속 커뮤니케이션 메시지를 받게 됩니다. Recommend(추천) 기능은 이메일을 활용한 최대 4개의 제안과 푸시를 통한 1개의 제안을 발송합니다. 그 결과 이 메시지로 인한 체크아웃 전환율이 158% 이상 증가하는 엄청난 성과를 보였습니다.
Amplitude(앰플리튜드)를 사용하면 여러분이 직접 설정한 개인화 경험 환경의 영향력을 쉽게 측정할 수 있습니다. Amplitude(앰플리튜드) Recommend(추천)에서 만든 모든 코호트는 Amplitude(앰플리튜드) Analytics 기능에서 분석할 수 있습니다. 캠페인의 영향을 이해하는 것은 차트를 작성하는 것만큼 간단합니다. 대상을 다시 생성하거나 작업을 복제할 필요없이 쉽고 편하게 확인할 수 있습니다.
Recommendations의 경우, 자동화된 리프트 분석을 통해 측정 기능을 한 단계 더 발전시켰습니다. 여러분이 생성한 각 Recommendation에 포함할 유저의 비율을 선택할 수 있습니다. 0-100% 내에서 자유롭게 선택 가능합니다. 그 다음 API 프로파일에 Recommendation을 쿼리하면 Amplitude(앰플리튜드)가 사용자에게 컨트롤 권한을 할당하거나 Recommendation을 제공합니다. 동시에 자동으로 가장 영향력이 큰 이벤트를 기록하여 Recommendation이 기존 경험 환경에 얼마나 큰 영향을 미치는지 추적합니다. 간단히 Recommendation의 성능(Performance) 탭을 클릭하면 확인할 수 있습니다. 분석 및 개인화를 위한 하나의 통합 시스템이 통합 데이터 세트에 모두 구축되어 있으므로 여러분이 생성한 개인화 경험 환경의 실행 루프를 쉽게 닫을 수 있습니다.
Amplitude(앰플리튜드) Recommend(추천)의 장점은 디지털 최적화 시스템의 완전한 피드백 루프를 가능하게 한다는 것입니다.
Amplitude(앰플리튜드) Recommend(추천)에서 버튼을 클릭하면 코호트와 Recommendations를 생성할 수 있고, 이를 여러분의 광고, 이메일, 인앱 캠페인과 동기화할 수 있으며, 이 모든 캠페인의 성과를 Amplitude(앰플리튜드) Analytics에서 다시 모니터링 할 수 있습니다.
이 프로세스의 자동화를 통해 프로덕트 팀과 마케팅 팀을 연결하여 런칭에 필요한 시간을 단축할 수 있습니다. 통합 머신러닝은 엔지니어링 비용을 절감하고 Recommendations의 정확도를 높입니다. 또한 상호 보완 분석을 통해 이러한 개인화 실험의 영향력을 안정적으로 측정할 수 있습니다.
Amplitude(앰플리튜드)의 Recommend(추천) 기능이 여러분의 비즈니스에 어떻게 도움이 될지 궁금하시다면 Team Maxonomy(팀맥소노미)에게 문의주세요.
Team Maxonomy는 Amplitude(앰플리튜드) 혹은 Amplitude(앰플리튜드)와 Braze(브레이즈)를 결합하여 사용하는 기업을 위해 교육 및 컨설팅, 데모 시연을 제공해 드리고 있습니다. 다년간의 컨설팅 경험을 기반으로 Amplitude(앰플리튜드)와 Braze(브레이즈)를 활용한 가장 자동화된 마케팅 방법을 제안합니다. 궁금한 점이 있으시면 언제든 편하게 연락해주세요.
[Amplitude 백서📥] Amplitude 예측 세그멘테이션 플레이북 (0) | 2021.09.27 |
---|---|
📥Amplitude(앰플리튜드) 행동 코호트 가이드북 무료 다운로드 (0) | 2021.07.26 |
Amplitude(앰플리튜드)로 D2C(Direct-to-Customer) 기업이 직면한 세가지 과제 해결하기 (0) | 2021.06.25 |
그로스 해커의 데이터 분석 필수 솔루션: Amplitude(앰플리튜드) (0) | 2021.06.15 |
프로덕트 인텔리전스 툴 Amplitude(앰플리튜드) 활용 사례 - 언더아머, 웰 파머시, 널드월렛 (0) | 2021.05.31 |
댓글 영역